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Abstract

We study the low-energy behavior of the Green function for one-dimensional
Fokker–Planck and Schrödinger equations with periodic potentials. We derive
a formula for the power series expansion of reflection coefficients in terms
of the wave number, and apply it to the low-energy expansion of the Green
function.

PACS numbers: 03.65.Nk, 02.30.Hq, 02.50.Ey

1. Introduction

One-dimensional diffusion in a potential V (x) is described by the Fokker–Planck equation

− d2

dx2
φ(x) + 2

d

dx
[f (x)φ(x)] = k2φ(x), (1.1)

where

f (x) = −1

2

d

dx
V (x). (1.2)

The Fokker–Planck equation (1.1) is equivalent to the Schrödinger equation

− d2

dx2
ψ(x) + VS(x)ψ(x) = k2ψ(x), (1.3)

where ψ and VS are respectively related to φ and f in (1.1) by

φ(x) = e−V (x)/2ψ(x), VS(x) = f 2(x) + f ′(x). (1.4)

We assume that Im k � 0. Let GS(x, y; k) denote the Green function for the Schrödinger
equation, satisfying[

∂2

∂x2
− VS(x) + k2

]
GS(x, y; k) = δ(x − y) (1.5)
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together with the boundary conditions GS(x, y; k) → 0 as |x − y| → ∞ for Im k > 0. For
real k, we define GS(x, y; k) ≡ limε↓0 GS(x, y; k + iε). Without loss of generality we assume
x � y. The Green function for the Fokker–Planck equation is given by

GF(x, y; k) ≡ e−[V (x)−V (y)]/2GS(x, y; k). (1.6)

This GF(x, y; k) satisfies

[
∂2

∂x2
− 2

∂

∂x
f (x) + k2

]
GF(x, y; k) = δ(x − y). (1.7)

In previous papers [1, 2], we introduced a new method for systematically calculating the
expansion of GS(k) in powers of k. In these papers, it was assumed that the potential V (x)

either steadily tends to a finite limit, or steadily diverges to +∞ or −∞, as x → ±∞. We
wish to extend our method to be applicable to more general potentials, including the cases
where V (x) oscillates as x → ±∞. In the present paper we study the simplest of such cases,
namely the cases where the potential is purely periodic. We assume that the potential V (x) is
a real-valued periodic function with period L,

V (x + L) = V (x), (1.8)

and that V (x) is piecewise continuously differentiable1.
The Fokker–Planck equation with a periodic potential has various applications such as

Josephson junctions [4] and superionic conductors [5, 6], to name a few. And, needless to
say, the Schrödinger equation with a periodic potential plays an essential role in solid state
physics. Thus, the study of periodic systems is significant in itself. Schrödinger operators
with periodic potentials have been extensively investigated over the years, and much is known
about their spectral properties [7–11].

To carry out the analysis of the Green function, we adopt a formalism that deals with
reflection coefficients. Reflection coefficients are of extreme importance in scattering theory,
and their properties have been studied by many researchers, especially in connection with the
inverse scattering method [12–16]. The formula derived in [1] provides a new method for
calculating the expansion of reflection coefficients up to an arbitrary order in k. The aim of
the present paper is to modify this formula and make it applicable to the periodic case. The
resulting formula serves as a new tool for the analysis of periodic systems, and enables us
to deal with periodic and non-periodic potentials on the same basis. Although we restrict
ourselves to periodic potentials in this paper, this method can be further extended to more
general potentials which show oscillatory behavior at infinity.

The necessary results from the previous papers will be briefly reviewed in section 3, after
making some definitions in the next section. In sections 4–8, we discuss how to adapt the
expansion formula to the periodic case. Using the expansion of reflection coefficients, we shall
derive the low-energy expansion of the Green function in sections 9 and 10. As is well known,
the energy spectrum of a periodic system has a band structure. The expansion in powers of
k is an expansion from the bottom of the lowest band, and it is effective for calculating the
Green function in the lowest band. An example is given in section 11.

1 We allow V (x) to have jump discontinuities. Although VS(x) does not make sense when V (x) is discontinuous,
the Fokker–Planck equation is well defined even for such V. See [3] or footnote 1 or [2]. When VS does not make
sense, GS is defined by (1.7) and (1.6).
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2. Preliminaries

In this section we summarize the necessary definitions and notation. We define the evolution
matrix U(x, x ′; k) as the 2 × 2 matrix satisfying the differential equation [17]

∂

∂x
U(x, x ′; k) =

( −ik f (x)

f (x) ik

)
U(x, x ′; k) (2.1)

with the initial condition

U(x ′, x ′; k) =
(

1 0
0 1

)
. (2.2)

It is obvious from (2.1) that the upper-right and lower-right elements of U are obtained,
respectively, from the lower-left and upper-left elements by changing the sign of k. We write
these elements as

U(x, x ′; k) ≡
(

α(x, x ′; k) β(x, x ′; −k)

β(x, x ′; k) α(x, x ′; −k)

)
. (2.3)

From (2.1), we can easily show that α(x, x ′; k) + β(x, x ′; k) and α(x, x ′; −k) + β(x, x ′; −k),
as functions of x, are solutions of the Schrödinger equation (1.3). The matrix equation (2.1)
is thus equivalent to (1.1) and (1.3).

Since the matrix multiplying U on the right-hand side of (2.1) is traceless, the determinant
of U is unity. Namely,

α(x, x ′; k)α(x, x ′; −k) − β(x, x ′; k)β(x, x ′; −k) = 1. (2.4)

It is easy to see that the evolution matrix has the property

U(x3, x2; k)U(x2, x1; k) = U(x3, x1, ; k). (2.5)

If the potential is a periodic function satisfying (1.8), then f (x + L) = f (x), and so

U(x + L, x ′ + L; k) = U(x, x ′; k). (2.6)

The transmission coefficient τ , the right reflection coefficient Rr and the left reflection
coefficient Rl are defined in terms of α and β as

τ(x, x ′; k) ≡ 1

α(x, x ′; k)
, (2.7a)

Rr(x, x ′; k) ≡ β(x, x ′; k)

α(x, x ′; k)
, Rl(x, x ′; k) ≡ −β(x, x ′; −k)

α(x, x ′; k)
. (2.7b)

(See [17]. Similar construction of the reflection coefficients is used, for example, in [18].)
Let us explain why these quantities are called the transmission and reflection coefficients. We
consider a potential which is identical to V (x) inside the interval (x1, x2) and defined to be
constant outside this interval. Namely, we define

Vx1,x2(x) ≡
⎧⎨
⎩

V (x1) (x < x1)

V (x) (x1 � x � x2)

V (x2) (x2 < x),

fx1,x2(x) ≡ −1

2

d

dx
Vx1,x2(x). (2.8)

The Schrödinger equation corresponding to this Fokker–Planck potential Vx1,x2 is

−d2ψ

dx2
+

(
f 2

x1,x2
+ f ′

x1,x2

)
ψ = k2ψ. (2.9)

3
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As shown in appendix A, this Schrödinger equation has two independent solutions that behave
outside the interval (x1, x2) as2

ψ1(x) =
{
τ(x2, x1; k) e−ik(x−x1) (x < x1)

e−ik(x−x2) + Rr(x2, x1; k) eik(x−x2) (x > x2),
(2.10a)

ψ2(x) =
{

eik(x−x1) + Rl(x2, x1; k) e−ik(x−x1) (x < x1)

τ (x2, x1; k) eik(x−x2) (x > x2).
(2.10b)

Thus, Rr(x2, x1; k) (or Rl(x2, x1; k)) is the factor multiplying the wave reflected from the
interval (x1, x2) when an incident wave is coming into this interval from the right (or,
respectively, left), and τ(x2, x1; k) is the factor multiplying the transmitted wave.

We define

Sr(x, k) ≡ Rr(x,−∞; k)

1 + Rr(x,−∞; k)
, Sl(x, k) ≡ Rl(∞; x; k)

1 + Rl(∞, x; k)
, (2.11)

S(x, k) ≡ Sr(x, k) + Sl(x, k). (2.12)

The reflection coefficients for semi-infinite intervals, which appear in (2.11), are well defined as
long as Im k > 0. (The well-definedness of Rr(x,−∞; k) for periodic potentials is explained
in appendix B. For non-periodic potentials, see appendix G of [2]. A related discussion is
found in [19].) For Im k = 0, we define them as Rr(x,−∞; k) ≡ limε↓0 Rr(x,−∞; k + iε)
and Rl(∞, x; k) ≡ limε↓0 Rl(∞, x; k + iε). As explained in appendix C, the functions Sr,
Sl and S are closely related to the Weyl–Titchmarsh m-function. The Green function can be
expressed in terms of this S as [20]

GS(x, y; k) = 1

2ik
√

[1 − S(x, k)][1 − S(y, k)]
exp

[
ik(x − y) − ik

∫ x

y

S(z, k) dz

]
. (2.13)

In our formalism, we deal with the scattering coefficients τ , Rr and Rl in a generalized
form with an additional variable W . First, we define ᾱ and β̄ by(

ᾱ(x, x ′;W ; k) β̄(x, x ′;W ;−k)

β̄(x, x ′;W ; k) ᾱ(x, x ′;W ;−k)

)

≡
(

cosh W−V (x)

2 − sinh W−V (x)

2

− sinh W−V (x)

2 cosh W−V (x)

2

) (
α(x, x ′; k) β(x, x ′; −k)

β(x, x ′; k) α(x, x ′; −k)

)
. (2.14)

(Here, as elsewhere in this paper, the bar does not denote complex conjugation.) Then τ̄ , R̄r

and R̄l are defined in the same way as (2.7) with α → ᾱ and β → β̄:

τ̄ (x, x ′;W ; k) ≡ 1

ᾱ(x, x ′;W ; k)
=

√
1 − ξ 2(x,W) τ(x, x ′; k)

1 − ξ(x,W)Rr(x, x ′; k)
, (2.15a)

R̄r (x, x ′;W ; k) ≡ β̄(x, x ′;W ; k)

ᾱ(x, x ′;W ; k)
= Rr(x, x ′; k) − ξ(x,W)

1 − ξ(x,W)Rr(x, x ′; k)
, (2.15b)

R̄l(x, x ′;W ; k) ≡ − β̄(x, x ′;W ;−k)

ᾱ(x, x ′;W ; k)
= Rl(x, x ′; k) +

ξ(x,W)τ 2(x, x ′; k)

1 − ξ(x,W)Rr(x, x ′; k)
, (2.15c)

2 In some of the previous papers, there is an error in the equations corresponding to (2.10) (equations (2.3) of [2],
equations (1.6) of [1] and equations (3.2) of [20]). The functions defined in these equations are solutions of the
Schrödinger equation, and not the Fokker–Planck equation. For these functions to become solutions of the Fokker–
Planck equation, there should be a factor e[V (x2)−V (x1)]/2 or e−[V (x2)−V (x1)]/2 in front of the transmission coefficient
τ(x2, x1; k). This error does not affect any of the results of these papers.
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where

ξ(x,W) ≡ tanh
W − V (x)

2
. (2.16)

The meaning of these generalized scattering coefficients is explained in [21]. The original
scattering coefficients τ , Rr and Rl are recovered from τ̄ , R̄r and R̄l respectively by setting
W = V (x).

For k = 0, equation (2.1) can be exactly solved. It is easy to see that

α(x, x ′; 0) = cosh
V (x ′) − V (x)

2
, β(x, x ′; 0) = sinh

V (x ′) − V (x)

2
. (2.17)

Hence, we have the expressions of τ̄ , R̄r and R̄l for k = 0 as

τ̄ (x, x ′;W ; 0) = sech
W − V (x ′)

2
,

R̄r (x, x ′;W ; 0) = − tanh
W − V (x ′)

2
, R̄l(x, x ′;W ; 0) = tanh

W − V (x ′)
2

. (2.18)

For n = 1, 2, 3, . . . and −∞ � a � b � ∞, we define the notation

[σ1, σ2, . . . , σn]ba ≡
∫

· · ·
∫

a�z1�z2�···�zn�b

dz1 dz2 · · · dzn exp

⎡
⎣ n∑

j=1

σjV (zj )

⎤
⎦ , (2.19)

where each σj is either +1 or −1. For simplicity, we use the obvious abbreviation [+]ba , [−]ba ,
[+−]ba , etc in place of [+1]ba , [−1]ba , [+1,−1]ba , etc. The integrals of the form (2.19) satisfy the
multiplication rule

[σ1, σ2, . . . , σn]ba × [σ ′]ba = [σ ′, σ1, σ2, . . . , σn]ba + [σ1, σ
′, σ2, . . . , σn]ba

+ [σ1, σ2, σ
′ . . . , σn]ba + · · · + [σ1, σ2, . . . , σ

′, σn]ba + [σ1, σ2, . . . , σn, σ
′]ba.

(2.20)

When the potential satisfies (1.8), the quantities defined by

M ≡ [−]xx−L =
∫ x

x−L

e−V (z) dz, P ≡ [+]xx−L =
∫ x

x−L

eV (z) dz (2.21)

are independent of x. It is also convenient to define

L0 ≡
√

PM, eV0 ≡
√

P/M, i.e. V0 ≡ (1/2) log(P/M). (2.22)

From (2.20) and (2.21), we have

[++]xx−L = P 2/2, [−−]xx−L = M2/2, [+−]xx−L + [−+]xx−L = PM = L2
0. (2.23)

We can check that the left-hand sides of (2.23) are independent of x by differentiating them
with respect to x, using

d

dx
[σ1, σ2, . . . , σn]xx−L = [σ1, σ2, . . . , σn−1]xx−L eσnV (x) − [σ2, σ3, . . . , σn]xx−L eσ1V (x). (2.24)

We define the operators A and B, which act on functions of x and W , as

Ah(x,W) ≡ ∂

∂x
h(x,W), (2.25)

Bh(x,W) ≡ ∂

∂W
{sinh[W − V (x)]h(x,W)}

=
{

cosh[W − V (x)] + sinh[W − V (x)]
∂

∂W

}
h(x,W). (2.26)

5
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We assume that the functions h(x,W ), on which these operators act, are (i) piecewise
continuously differentiable3 with respect to x, and (ii) analytic with respect to W on the
real axis.

Finally, the operator D is defined as

Dh(x,W) ≡ h(x,W) − h(x, V0), (2.27)

with V0 defined by (2.22). In terms of differential and integral operators, we can write

D =
∫ W

V0

dW
∂

∂W
. (2.28)

3. The low-energy expansion formula for non-periodic potentials

Here we review the expansion formula for reflection coefficients derived in [1], where the
potential V (x) was assumed to be monotone for sufficiently large |x|. For details, see [1] and
[2]. In this section, V (x) is not assumed to be periodic.

With expression (2.13), the analysis of the Green function is reduced to the analysis of the
reflection coefficients Rr(x,−∞; k) and Rl(∞, x; k). Here we consider Rr(x,−∞; k). As
a function of x, the reflection coefficient satisfies a nonlinear differential equation of Riccati
type. By introducing the generalized reflection coefficient (2.15b) with an additional variable
W , we can turn this nonlinear equation into a linear partial differential equation for the two
variables x and W . This equation has the form

(A − 2ikB)[R̄r (x,−∞;W ; k) + ξ(x,W)] = [1 − ξ 2(x,W)]f (x) (3.1)

with the operators A and B defined by (2.25) and (2.26) respectively. The reflection coefficient
can be obtained by solving (3.1). Solving the differential equation (3.1) with an appropriate
boundary condition is equivalent to finding the inverse of the operator A − ikB with an
appropriately restricted domain.

Let us start with the case k = 0. If we restrict the domain of the operator A to functions
satisfying

lim
x→−∞ h(x,W) = 0, (3.2)

then we have the inverse of A as

A−1g(x,W) =
∫ x

−∞
g(z,W) dz, (3.3)

where g(x,W) = (∂/∂x)h(x,W) with some h satisfying (3.2). The operator A−1 given by
(3.3) satisfies A−1Ah = h and AA−1g = g if h satisfies (3.2).

This can be extended to k �= 0. We restrict the domain of the operator A− ikB to functions
h(x,W ) which satisfy

lim
z→−∞

τ̄ 2(x, z;W ; k)

1 − R̄2
l (x, z;W ; k)

h(z, ω̄(x, z;W ; k)) = 0 (3.4)

for any x, where

ω̄(x, z;W ; k) ≡ V (z) + log
1 + R̄l(x, z;W ; k)

1 − R̄l(x, z;W ; k)
. (3.5)

3 Here we do not require h(x,W ) to be continuous in x. We allow h to have jumps, and so ∂h/∂x may contain delta
functions. The argument in [1] is valid without the requirement of continuity.

6
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Then the inverse of A − ikB is given by

(A − 2ikB)−1g(x,W) =
∫ x

−∞
dz

τ̄ 2(x, z;W ; k)

1 − R̄2
l (x, z;W ; k)

g(z, ω̄(x, z;W ; k)). (3.6)

This (A − ikB)−1 satisfies (A − ikB)−1(A − ikB)h = h and (A − ikB)(A − ikB)−1g = g

provided that h satisfies (3.4). In (3.4), the expression h(z, ω̄(x, z;W ; k)) stands for the
quantity obtained from h(x,W ) by inserting z and ω̄(x, z;W ; k) in place of x and W

respectively. From (2.18) and (3.5), we have ω̄(x, z;W ; 0) = W . By using this and (2.18),
we can see that (3.4) reduces to (3.2) if we set k = 0. Similarly, the right-hand side of (3.6)
reduces to (3.3) when k is set to be zero.

It can be shown that R̄r (x,−∞;W ; k)+ξ(x,W), as a function of x and W , satisfies (3.4).
So it is possible to apply (A − 2ikB)−1 to both sides of (3.1) and obtain

R̄r (x,−∞;W ; k) = −ξ + (A − 2ikB)−1(1 − ξ 2)f. (3.7)

By iterating the identity

(A − 2ikB)−1 = A−1 + 2ik(A − 2ikB)−1BA−1, (3.8)

we have the expression

(A − 2ikB)−1 = [1 + ikL + (ik)2L2 + · · · + (ik)NLN ]A−1

+ (ik)N+1(A − 2ikB)−1ALN+1A−1, (3.9)

where

L ≡ 2A−1B. (3.10)

The expansion of R̄r (x,−∞;W ; k) in powers of k can be obtained by substituting (3.9) into
(3.7). We have

R̄r = r̄0 + ikr̄1 + (ik)2r̄2 + · · · + (ik)N r̄N + ρ̄N (3.11)

with the coefficients of the expansion

r̄0 = A−1(1 − ξ 2)f − ξ, (3.12a)

r̄n = Ln(r̄0 + ξ) (n � 1), (3.12b)

and the remainder term

ρ̄N = (ik)N+1(A − 2ikB)−1A r̄N+1. (3.13)

This method works well if V (x) either converges to a definite value or diverges to ±∞
as x → −∞. From (1.2) and (2.16) we find

(1 − ξ 2)f = −1

2 cosh2 W−V (x)

2

d

dx
V (x) = ∂

∂x
tanh

W − V (x)

2
. (3.14)

Substituting this into (3.3) gives

A−1(1 − ξ 2)f =
∫ x

−∞

(
∂

∂z
tanh

W − V (z)

2

)
dz = ξ − tanh

W − V (−∞)

2
. (3.15)

The zeroth-order coefficient of the expansion (equation (3.12a)) is thus

r̄0 = − tanh
W − V (−∞)

2
. (3.16)

If V (−∞) = ±∞, then r̄0 = ±1. The higher order coefficients can be obtained by substituting
(3.16) into (3.12b). The resulting expressions are given in [1] and [2].

7
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4. Application of the expansion formula to periodic potentials

The expansion formula shown in the previous section cannot be directly applied to periodic
potentials. If V is periodic, the right-hand side of (3.16) does not have a definite value. It is
the objective of this paper to make a modification to this formula so that it becomes applicable
to the periodic case.

Equation (3.1) holds for any potential, whether it is periodic or not. The function
h(x,W) = R̄r (x,−∞;W ; k) + ξ(x,W) is periodic in x when the potential is periodic. If h
is periodic, then (3.4) is satisfied as long as Im k > 0. Therefore, the basic expressions (3.7)
and (3.6) are correct even when the potential is periodic. (When Im k = 0, it is necessary to
replace k on the right-hand side of (3.6) by k + iε with ε > 0, and take the limit ε → 0 after
evaluating the integral.)

If we try to apply the method of section 3 to a periodic potential, we need to let A−1 act on
periodic functions, as in equations (3.12a) and (3.12b). However, since (3.2) is not satisfied
when h(x,W ) is periodic, we cannot use (3.3) for periodic functions. The right-hand side of
(3.3) is indeterminate when g(x,W ) is periodic in x.

Thus, in order to deal with periodic potentials, we must discard (3.3) and find another
appropriate expression for the inverse of A. Since (3.6) is valid for both periodic and non-
periodic cases, we can derive A−1 from (3.6) as

A−1g(x,W) = lim
k→0

(A − 2ikB)−1g(x,W)

= lim
k→0

∫ x

−∞

τ̄ 2(x, z;W ; k)

1 − R̄2
l (x, z;W ; k)

g(z, ω̄(x, z;W ; k)) dz. (4.1)

As we shall see later, this gives the correct inverse of A even when the potential is periodic.
This expression includes (3.3) as a special case. As noted below equation (3.6), the right-hand
side of (3.3) is obtained by letting k → 0 inside the integral, i.e.∫ x

−∞
lim
k→0

τ̄ 2(x, z;W ; k)

1 − R̄2
l (x, z;W ; k)

g(z, ω̄(x, z;W ; k)) dz =
∫ x

−∞
g(z,W) dz. (4.2)

Hence, we find that (4.1) reduces to (3.3) if the limit and the integral in (4.1) are
interchangeable. This is what happens in the non-periodic cases discussed in the previous
papers. In the periodic case, however, the limit and the integral cannot be interchanged, and
so the correct inverse of A is different from (3.3).

What we mean by ‘correct inverse of A’ is the operator A−1 that can be used in
equations (3.12) to produce the correct expansion of R̄r . As we have not yet specified
the domain of A, the term ‘inverse of A’ does not yet have a definite meaning. For the time
being, let us accept (4.1) as the definition of A−1. It will be shown in section 6, after properly
defining the domain of A, that this A−1 is indeed the inverse of A.

The method of section 3 remains valid for periodic potentials if (3.3) is is replaced by
(4.1). Our main task is to calculate the right-hand side of (4.1) to derive an expression of A−1

for the periodic case. This will be done in the next section. The result is

A−1g(x,W) = 1

L0 sinh(W − V0)
D

∫∫
x−L�z�z′�x

dz dz′ sinh[V (z′) − W ]g(z,W), (4.3)

where L0, V0 and D are defined by (2.22) and (2.27). More explicitly, this means

A−1g(x,W) = 1

L0 sinh(W − V0)

∫ x

x−L

dz

∫ x

z

dz′{sinh[V (z′) − W ]g(z,W)

− sinh[V (z′) − V0]g(z, V0)}. (4.4)

8
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This, instead of (3.3), is the inverse of A appropriate for periodic potentials.
Hereafter, we shall always assume that V (x) is periodic. The symbol A−1 shall always

refer to (4.1) or (4.3), and not (3.3).

5. Derivation of (4.3)

In this section, we shall derive (4.3) from (4.1). We assume that g(x,W) = Ah(x,W) with
some function h satisfying h(x + L,W) = h(x,W). Then it follows that

g(x + L,W) = g(x,W), (5.1)∫ x

x−L

g(z,W) dz = 0, (5.2)

where x is arbitrary. As it turns out, (4.1) does not make sense unless (5.2) is satisfied.
The expressions appearing in (3.6) and (3.5) can be written as

τ̄ 2(x, z;W ; k)

1 − R̄2
l (x, z;W ; k)

= 1

ᾱ2(x, z;W ; k) − β̄2(x, z;W ;−k)
, (5.3a)

1 + R̄l(x, z;W ; k)

1 − R̄l(x, z;W ; k)
= ᾱ(x, z;W ; k) − β̄(x, z;W ;−k)

ᾱ(x, z;W ; k) + β̄(x, z;W ;−k)
. (5.3b)

So, in order to calculate the right-hand side of (4.1), we need to know the small-k behavior
of ᾱ(x, z;W ; k) and β̄(x, z;W ;−k). By definition, ᾱ(x, z;W ; k) and β̄(x, z;W ;−k) are
obtained from the elements of the matrix U(x, z; k).

We divide the domain of the integral in (4.1) into regions of length L as∫ x

−∞
=

∞∑
n=0

∫ x−nL

x−(n+1)L

. (5.4)

To deal with each term on the right-hand side of (5.4), we assume that

x − (n + 1)L < z � x − nL. (5.5)

Using (2.5) and (2.6), the matrix U(x, z; k) is factorized as

U(x, z; k) = U(x, x − nL; k)U(x − nL, z; k) = [U(x, x − L; k)]nU(x − nL, z; k). (5.6)

We can calculate [U(x, x − L; k)]n, which appears in (5.6), by diagonalizing U(x, x − L; k).
The eigenvalues of U(x, x − L; k) are λ(k) and 1/λ(k), where

λ(k) ≡ Y (k) − i
√

1 − [Y (k)]2, (5.7)

Y (k) ≡ 1
2 [α(x, x − L; k) + α(x, x − L;−k)]. (5.8)

We used (2.4) to derive (5.7). As shown in appendix D, the quantity Y (k) is independent
of x, and so is λ(k). The branch of the square root in (5.7) is chosen so that |λ(k)| > 1 for
Im k > 0. The two eigenvalues of U are the reciprocal of each other, reflecting the fact that
the determinant of U is unity. Also note that λ(−k) = 1/λ(k). It is straightforward to show
that [U(x, x − L; k)]n is expressed in terms of λ as

[U(x, x − L)]n = 1

λ − λ−1

(
λ−n(λ − α) − λn(λ−1 − α) β ′(λn − λ−n)

β(λn − λ−n) λn(λ − α) − λ−n(λ−1 − α)

)
,

(5.9)

9
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where we have omitted the dependence on k, and used the abbreviation

α ≡ α(x, x − L; k), β ≡ β(x, x − L; k), β ′ ≡ β(x, x − L;−k). (5.10)

In general, for any finite x1 and x2, we can expand α(x2, x1; k) and β(x2, x1; k) in powers
of k as

α(x2, x1; k) = cosh
V (x1) − V (x2)

2
− ik

2

(
e[V (x1)+V (x2)]/2 [−]x2

x1
+ e−[V (x1)+V (x2)]/2[+]x2

x1

)
−k2

2

(
e[V (x1)−V (x2)]/2[−+]x2

x1
+ e[V (x2)−V (x1)]/2[+−]x2

x1

)
+ O(k3), (5.11a)

β(x2, x1; k) = sinh
V (x1) − V (x2)

2
+

ik

2

(
e[V (x1)+V (x2)]/2 [−]x2

x1
− e−[V (x1)+V (x2)]/2[+]x2

x1

)
−k2

2

(
e[V (x1)−V (x2)]/2[−+]x2

x1
− e[V (x2)−V (x1)]/2[+−]x2

x1
) + O(k3). (5.11b)

The derivation of (5.11) is given in appendix B. With x2 = x and x1 = x−L, equation (5.11a)
reads

α(x, x − L; k) = 1 − ik

2
(eV (x)M + e−V (x)P ) − k2

2
PM + O(k3)

= 1 − ikL0 cosh[V (x) − V0] − k2

2
L2

0 + O(k3), (5.12)

where we have used (2.22) and (2.23). Substituting (5.12) into (5.8) and (5.7), we find

Y (k) = 1 − k2

2
L2

0 + O(k4),
√

1 − [Y (k)]2 = kL0 + O(k3), (5.13)

λ(k) = 1 − ikL0 − k2

2
L2

0 + O(k3), [λ(k)]−1 = 1 + ikL0 − k2

2
L2

0 + O(k3). (5.14)

Hence, the small-k expressions of the quantities appearing in (5.9) are

λ − λ−1 = −2ikL0 + O(k3), (5.15a)

λ − α(x, x − L; k) = 2ikL0 sinh2 V (x) − V0

2
+ O(k3), (5.15b)

λ−1 − α(x, x − L; k) = 2ikL0 cosh2 V (x) − V0

2
+ O(k3). (5.15c)

The expressions for β and β ′ are given by (5.11b) as

β(x, x − L;±k) = ±ikL0 sinh[V (x) − V0] − k2

2

(
[−+]xx−L − [+−]xx−L

)
+ O(k3). (5.16)

By substituting (5.15) and (5.16) into (5.9), we obtain the elements of U(x, x − nL; k) =
[U(x, x − L; k)]n as

α(x, x − nL;±k) = cosh2 V (x) − V0

2
λ±n − sinh2 V (x) − V0

2
λ∓n + O(k2), (5.17a)

β(x, x − nL;±k) = ∓ cosh
V (x) − V0

2
sinh

V (x) − V0

2
(λn − λ−n)

− ik

4L0

(
[−+]xx−L − [+−]xx−L

)
(λn − λ−n) + O(k2). (5.17b)

10
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(In these equations, λ stands for λ(k) and not λ(±k). Recall that λ(−k) = 1/λ(k).) Since we
are going to take the sum over n as in (5.4), we cannot expand λn and λ−n in powers of k and
neglect the higher order terms. Even if |k| is small, the higher order terms are not negligible
when n is large. So, we leave λn and λ−n as they are.

Up to order k, the elements of U(x − nL, z; k) are given by (5.11) as

α(x − nL, z;±k) = cosh
V (z) − V (x)

2
∓ ik

2

(
e[V (x)+V (z)]/2 [−]x−nL

z

+ e−[V (x)+V (z)]/2[+]x−nL
z

)
+ O(k2), (5.18a)

β(x − nL, z;±k) = sinh
V (z) − V (x)

2
± ik

2

(
e[V (x)+V (z)]/2[−]x−nL

z

− e−[V (x)+V (z)]/2[+]x−nL
z

)
+ O(k2). (5.18b)

The expressions of α(x, z;±k) and β(x, z;±k) are obtained by substituting (5.17) and (5.18)
into U(x, z; k) = U(x, x − nL; k)U(x − nL, z; k), or, explicitly,

α(x, z;±k) = α(x, x − nL;±k)α(x − nL, z;±k) + β(x, x − nL;∓k)β(x − nL, z;±k),

β(x, z;±k) = β(x, x − nL;±k)α(x − nL, z;±k) + α(x, x − nL;∓k)β(x − nL, z;±k).

(5.19)

Substituting the resulting expressions into the definition of ᾱ and β̄ (equations (2.14)) yields

ᾱ(x, z;W ; k) =
(

cosh
V (z) − V0

2
cosh

W − V0

2

)
λn −

(
sinh

V (z) − V0

2
sinh

W − V0

2

)
λ−n

− ik

2

[
cosh

W − V0

2

(
e[V (z)+V0]/2[−]x−nL

z + e−[V (z)+V0]/2[+]x−nL
z

)
λn

+ sinh
W − V0

2

(
e[V (z)+V0]/2[−]x−nL

z − e−[V (z)+V0]/2[+]x−nL
z

)
λ−n

]

− ik

4L0
sinh

V (z) − W

2

(
[−+]xx−L − [+−]xx−L

)
(λn − λ−n) + O(k2),

(5.20a)

β̄(x, z;W ;−k) =
(

sinh
V (z) − V0

2
cosh

W − V0

2

)
λn−

(
cosh

V (z) − V0

2
sinh

W − V0

2

)
λ−n

− ik

2

[
cosh

W − V0

2

(
e[V (z)+V0]/2[−]x−nL

z − e−[V (z)+V0]/2[+]x−nL
z )λn

+ sinh
W − V0

2

(
e[V (z)+V0]/2[−]x−nL

z + e−[V (z)+V0]/2[+]x−nL
z

)
λ−n

]

− ik

4L0
cosh

V (z) − W

2

(
[−+]xx−L − [+−]xx−L

)
(λn − λ−n) + O(k2). (5.20b)
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Details of the calculation are given in appendix E. From (5.3) and (5.20) we obtain

τ̄ 2(x, z;W ; k)

1 − R̄2
l (x, z;W ; k)

= 1

cosh2 W−V0
2

γ n

1 − (c0γ n)2

(
1 + ik

1 + c0γ
n

1 − c0γ n
e−V0 [+]x−nL

z

+ ik
1 − c0γ

n

1 + c0γ n
eV0 [−]x−nL

z + kB1

)
+ O(k2), (5.21a)

1 + R̄l(x, z;W ; k)

1 − R̄l(x, z;W ; k)
= e−V (z)+V0

1 − c0γ
n

1 + c0γ n

(
1 − ik

1 + c0γ
n

1 − c0γ n
e−V0 [+]x−nL

z

+ ik
1 − c0γ

n

1 + c0γ n
eV0 [−]x−nL

z + kB2

)
+ O(k2), (5.21b)

where B1 and B2 are quantities independent of z, and

c0 ≡ − tanh
W − V0

2
, γ ≡ 1

λ2
= 1 + 2ikL0 + O(k2). (5.22)

As mentioned before, we cannot let γ n 
 1 + 2nikL0 in (5.21). We must take the sum over n
before using γ 
 1 + 2ikL0. The z-independent terms kB1 and kB2 in (5.21) derive from the
terms involving

(
[−+]xx−L − [+−]xx−L

)
in (5.20). As we shall see, they are irrelevant to the

final result.
We assume that g(x,W ) can be expanded in powers of eW as

g(x,W) =
∞∑

j=0

gj (x) ejW . (5.23)

Condition (5.2) requires that∫ x

x−L

gj (z) dz = 0. (5.24)

For each term in (5.23), expression (3.6) gives

(A − 2ikB)−1gj (x) ejW =
∫ x

−∞
dz

τ̄ 2(x, z;W ; k)

1 − R̄2
l (x, z;W ; k)

ejV (z)

[
1 + R̄l(x, z;W ; k)

1 − R̄l(x, z;W ; k)

]j

gj (z).

(5.25)

We divide the integral as (5.4), and shift the variable of integration by z → z − nL. Thus, the
right-hand side of (5.25) is rewritten as∫ x

−∞
C(z) dz =

∞∑
n=0

∫ x−nL

x−(n+1)L

C(z) dz =
∞∑

n=0

∫ x

x−L

C(z − nL) dz, (5.26)

where C(z) stands for the integrand in (5.25). For each n in the sum of (5.26), we can use
(5.21). Substituting (5.21), and using [+]x−nL

z−nL = [+]xz , [−]x−nL
z−nL = [−]xz , we obtain

(A − 2ikB)−1gj (x) ejW = ejV0

cosh2 W−V0
2

∞∑
n=0

{∫ x

x−L

γ n

1 − (c0γ n)2

(
1 − c0γ

n

1 + c0γ n

)j

×
[

1 + ik(1 − j)
1 + c0γ

n

1 − c0γ n
e−V0 [+]xz

+ ik(1 + j)
1 − c0γ

n

1 + c0γ n
eV0 [−]xz + kB3

]
gj (z) dz + O(k2)

}
, (5.27)

12
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where B3 (which derives from B1 and B2 of (5.21)) is independent of z. On the right-hand
side, the term of order k0 vanishes on account of (5.24). The part involving B3 vanishes for
the same reason. Therefore, (5.27) becomes

(A − 2ikB)−1gj (x) ejW = ik

cosh2 W−V0
2

∞∑
n=0

{
γ n

1 − (c0γ n)2

[
(j + 1)

(
1 − c0γ

n

1 + c0γ n
eV0

)j+1

×
∫ x

x−L

[−]xz gj (z) dz − (j − 1)

(
1 − c0γ

n

1 + c0γ n
eV0

)j−1 ∫ x

x−L

[+]xz gj (z) dz

]
+ O(k)

}
.

(5.28)

We have |γ | < 1 as long as Im k > 0. (Recall that Rr(k) ≡ limε↓0 Rr(k + iε) for real k.)
For an arbitrary integer m � 0, we can calculate the infinite sum

ik
∞∑

n=0

γ n(1+m) = ik

1 − γ 1+m
= − 1

2(m + 1)L0
+ O(k), (5.29)

where we have used γ = 1 + 2ikL0 + O(k2). Hence, for any analytic function h,

lim
k→0

ik
∞∑

n=0

γ nh(γ n) = − 1

2L0

∫ 1

0
h(x) dx, (5.30)

as can be proved by Taylor expanding h(x) and using (5.29) for each term. We can take the
limit k → 0 of (5.28) by using (5.30). To calculate the integral, we use the formula∫ 1

0

1

1 − (c0x)2

(
1 − c0x

1 + c0x

)m

dx = 1

2mc0

[
1 −

(
1 − c0

1 + c0

)m]
= em(W−V0) − 1

2m tanh W−V0
2

. (5.31)

From (5.28), (5.30) and (5.31) we obtain

lim
k→0

(A − 2ikB)−1gj (x) ejW = 1

2L0 sinh(W − V0)

{
(e(j−1)W − e(j−1)V0)

∫ x

x−L

[+]xz gj (z) dz

−(e(j+1)W − e(j+1)V0)

∫ x

x−L

[−]xz gj (z) dz

}

= 1

2L0 sinh(W − V0)
D

∫ x

x−L

(
e−W [+]xz − eW [−]xz

)
gj (z) ejW dz.

(5.32)

Taking the sum over j , we arrive at the result4

A−1g(x,W) = 1

2L0 sinh(W − V0)
D

∫ x

x−L

(
e−W [+]xz − eW [−]xz

)
g(z,W) dz. (5.33)

Substituting [+]xz = ∫ x

z
eV (z′) dz′ and [−]xz = ∫ x

z
e−V (z′) dz′ into (5.33) gives (4.3).

The above derivation shows that limk→0(A − 2ikB)−1g makes sense and is equal to the
right-hand side of (4.3) if both (5.1) and (5.2) are satisfied. If g satisfies only (5.1) and not
(5.2), then (A − 2ikB)−1g contains a term of order k−1 (see (5.27) and (5.30)), and so it is
impossible to take the limit k → 0.

4 Here we are assuming that A−1 ∑
j gj ejW = ∑

j A−1gj ejW . If we can write g(x, W) = Ah(x, W) with

h(x, W) = ∑
j hj (x) ejW , this assumption is equivalent to (∂/∂x)

∑
j hj ejW = ∑

j (∂hj /∂x) ejW . It is not
necessary to verify this assumption here, as it will be checked later (in section 6 and appendix F) that (5.33) is correct
as long as g(x,W ) belongs to the range of A defined in the next section.
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Since (∂/∂x)A−1g = g (see section 6 and appendix F), we can express A−1g as

A−1g(x,W) =
∫ x

x0

g(z,W) dz + c(x0,W), (5.34)

where x0 is an arbitrary number, and c(x0,W) is independent of x. Setting x = x0 in (5.34), we
find c(x0,W) = (A−1g)(x0,W). Equation (5.34) can also be directly derived by the method
described in this section if we start with

∫ x

−∞ = ∫ x

x0
+

∑ ∫ x0−nL

x0−(n+1)L
instead of (5.4).

6. Domains of A and A−1

Let h and g be functions such that g(x,W) = Ah(x,W). We are assuming that h(x,W ) is
piecewise continuously differentiable in x and analytic in W on the real axis, and also that

h(x + L,W) = h(x,W). (6.1)

As shown in the last section, A−1g(x,W) makes sense if (5.1) and (5.2) are satisfied.
Equations (5.1) and (5.2) follow from (6.1). But this is not enough. For (4.3) to give
the proper inverse of A, the domain of A must be further restricted.

As an inverse, A−1 is required to satisfy AA−1g = g and A−1Ah = h. From the first
line of (4.1), it follows that

lim
k→0

(A − 2ikB)(A − 2ikB)−1 = AA−1 − 2i lim
k→0

kBA−1, (6.2a)

lim
k→0

(A − 2ikB)−1(A − 2ikB) = A−1A − 2i lim
k→0

kA−1B. (6.2b)

The left-hand sides of (6.2) are identity operators. Therefore, AA−1g = g holds if BA−1g

makes sense, and A−1Ah = h holds if A−1Bh makes sense. The former condition is always
satisfied since A−1g(x,W) is analytic in W . So, AA−1g = g holds without any further
assumption on g.

On the other hand, the condition for A−1Ah = h imposes an additional restriction on h.
We already know that A−1g makes sense if (5.2) is satisfied. Replacing g by Bh, we can see
that A−1Bh makes sense if∫ x

x−L

Bh(z,W) dz = 0. (6.3)

Namely, A−1Ah = h holds if h satisfies (6.3).
In appendix F, it is verified by direct calculation that the operator A−1 given by (4.3) (or

(5.33)) satisfies A−1Ah = h and AA−1g = g, provided that h and g satisfy the conditions
specified above. Hence, we know that (4.3) is indeed the correct expression for the inverse of
A.

The conclusion of this section is as follows: we take the domain of the differential
operator A = ∂/∂x to be the set of functions h(x,W ) which satisfy (6.1) and (6.3), and which
are piecewise continuously differentiable in x and analytic in W on the real axis. Then (4.3)
gives the inverse of A, satisfying A−1Ah = h. The domain of A−1 is the range of A. It
consists of functions g(x,W ) which satisfy (5.1) and (5.2), and which are analytic in W and
continuous in x except possibly for some finite jumps and delta function singularities.

Let us note that R̄r (x,−∞;W ; k)+ξ(x,W), which appears on the left-hand side of (3.1),
belongs to the domain of A defined above. It is obvious that R̄r + ξ satisfies (6.1). To see that
(6.3) is satisfied, we rewrite (3.1) as

B(R̄r + ξ) = 1

2ik

[
∂

∂x
(R̄r + ξ) − (1 − ξ 2)f

]
= 1

2ik

∂

∂x
R̄r , (6.4)

14
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where we have used (1 − ξ 2)f = (∂/∂x)ξ (equation (3.14)). Therefore,∫ x

x−L

dzB[R̄r (z,−∞;W ; k) + ξ(z,W)] = 1

2ik

∫ x

x−L

dz
∂

∂z
R̄r(z,−∞;W ; k). (6.5)

The right-hand side vanishes because R̄r (x,−∞;W ; k) is periodic in x. Thus, R̄r + ξ satisfies
condition (6.3). It is not difficult to show, by using (3.1) and (2.15b), that R̄r + ξ is piecewise
continuously differentiable in x and analytic in W on the real axis.

7. Validity of the expansion

Consistency between (6.3) and g = Ah requires that∫ x

x−L

BA−1g(z,W) dz = 0. (7.1)

As shown in appendix G, equation (7.1) holds if g satisfies (5.2). This means that BA−1g

is in the domain of A−1 if g is in the domain of A−1. Recursively, it follows that (BA−1)ng

belongs to the domain of A−1 if g is in the domain of A−1. In other words, A−1(BA−1)ng

makes sense for any n if A−1g makes sense.
Now we can see that equations (3.11), (3.12) and (3.13) are valid for periodic potentials

if (3.3) is replaced by (4.3). Since (3.12b) can be written as

r̄n = 2nA−1(BA−1)n(1 − ξ 2)f (n � 1), (7.2)

it follows from the above argument that r̄n makes sense for any n if (1 − ξ 2)f belongs to the
domain of A−1. From (3.14) it is obvious that (1 − ξ 2)f satisfies conditions (5.1) and (5.2).
Therefore, (1 − ξ 2)f is in the domain of A−1, and hence r̄0 and all r̄n make sense. It is easy to
show that (A − 2ikB)−1g makes sense if A−1g makes sense. So the right-hand side of (3.13)
makes sense, too.

Thus, expansion (3.11) is justified for any N. The coefficients of the expansion r̄n given
by (3.12), as well as the remainder term ρ̄N , all make sense and are finite.

The behavior of the remainder term as k → 0 is simple in the periodic case. From (3.13)
and (4.1) we have limk→0 ρ̄N/(ik)N+1 = A−1A r̄N+1 = r̄N+1. Therefore, ρ̄N = O(kN+1)

as k → 0, since r̄n is finite for any n. Unlike in the non-periodic cases [2], no subtleties
arise when the potential is periodic. Expansion (3.11) is asymptotic for any N. Moreover, the
infinite series

∑∞
n=0(ik)nr̄n is convergent for sufficiently small |k|. An explanation about the

convergence of this series is given in appendix B.

8. Expressions for r̄n

Now let us calculate the coefficients r̄0, r̄1, r̄2, . . . of (3.11). First, r̄0 is given by (3.12a).
Substituting (3.14) into (4.3), and using

∫ x

x−L
e±V (z′) dz′ = L0 e±V0 , we obtain

A−1(1 − ξ 2)f = 1

L0 sinh(W − V0)
D

∫ x

x−L

dz′
∫ z′

x−L

dz sinh[V (z′) − W ]
∂

∂z
tanh

W − V (z)

2

= 1

L0 sinh(W − V0)
D

∫ x

x−L

dz′ sinh[V (z′) − W ]

×
(

tanh
W − V (z′)

2
− tanh

W − V (x)

2

)

= 1

L0 sinh(W − V0)
D[L − L0 cosh(W − V0) + L0 sinh(W − V0) ξ(x,W)]
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= 1

sinh(W − V0)
[1 − cosh(W − V0) + sinh(W − V0) ξ(x,W)]

= − tanh
W − V0

2
+ ξ, (8.1)

and hence

r̄0 = − tanh
W − V0

2
. (8.2)

This is to be compared with (3.16).
Next, we calculate r̄1 = 2A−1B(r̄0 + ξ). We can see that

B(r̄0 + ξ) = ∂

∂W

{
sinh[W − V (x)]

(
tanh

V0 − W

2
+ tanh

W − V (x)

2

)}

= ∂

∂W

{
sinh[V0 − V (x)]

(
tanh

W − V0

2
+ tanh

V0 − V (x)

2

)}

= sinh[V0 − V (x)]
1

2 cosh2 W−V0
2

. (8.3)

Substituting this into (4.3), and multiplying by 2, we have

r̄1 = 1

L0 sinh(W − V0)

×D
1

cosh2 W−V0
2

∫∫
x−L�z�z′�x

dz dz′ sinh[V (z′) − W ] sinh[V0 − V (z)]. (8.4)

The integrals on the right-hand side can be expressed as∫∫
x−L�z�z′�x

dz dz′ sinh[V (z′) − W ] sinh[V0 − V (z)]

= 1

4

(
e−W+V0 [−+]xx−L + eW−V0 [+−]xx−L − e−W−V0 [++]xx−L − eW+V0 [−−]xx−L

)
.

(8.5)

Substituting (8.5) into (8.4), and using definition (2.27), we find

r̄1 = 1

4L0 sinh(W − V0)

{(
e−W+V0

cosh2 W−V0
2

− 1

) (
[−+]xx−L − e−2V0 [++]xx−L

)

+

(
eW−V0

cosh2 W−V0
2

− 1

) (
[+−]xx−L − e2V0 [−−]xx−L

)}
. (8.6)

Using (2.22) and (2.23), we can reduce (8.6) to the simple form

r̄1 = 1

4L0 cosh2 W−V0
2

(
[+−]xx−L − [−+]xx−L

)
. (8.7)

For n � 2, we can calculate r̄n by successively applying L to r̄1 as r̄n = Ln−1r̄1. Let us
write the operator B as

B = 1

2

∑
σ=±1

e−σV (x)Ĵσ , Ĵσ ≡ eσW

(
1 + σ

∂

∂W

)
. (8.8)

Substituting sinh[V (z′) − W ] = 1
2

∑
σ ′=±1 σ ′ eσ ′V (z′) e−σ ′W into (4.3), and using (8.8), we can

write L in the form

L = 2A−1B = 1

2L0

∑
σ=±1

∑
σ ′=±1

Iσ,σ ′K−σ,−σ ′ , (8.9)
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where we have defined the operators Iσ,σ ′ and Kσ,σ ′ as

Iσ,σ ′g(x,W) ≡
∫∫

x−L�z�z′�x

dz dz′ eσV (z)+σ ′V (z′)g(z,W), (8.10)

Kσ,σ ′g(x,W) ≡ σ ′

sinh(V0 − W)
D eσ ′W Ĵσ g(x,W)

= 1

sinh(V0 − W)

∫ W

V0

dW Ĵσ ′ Ĵσ g(x,W). (8.11)

The expression r̄2 = L r̄1 with (8.7) and (8.9) reads

r̄2 = 1

8L2
0

∑
σ=±1

∑
σ ′=±1

(
K−σ,−σ ′

1

cosh2 W−V0
2

)
Iσ,σ ′

(
[+−]xx−L − [−+]xx−L

)
. (8.12)

Note that

[σ1, σ2]zz−L = [σ1, σ2]zx−L + [σ1]x−L
z−L [σ2]zx−L + [σ1, σ2]x−L

z−L

= [σ1, σ2]zx−L + [σ2]zx−L [σ1]xz + [σ1, σ2]xz . (8.13)

Therefore,

Iσ,σ ′[σ1, σ2]xx−L =
∫∫

x−L�z�z′�x

dz dz′ eσV (z)+σ ′V (z′)[σ1, σ2]zz−L

= [σ1, σ2, σ, σ ′]xx−L + [σ2, σ, σ1, σ
′]xx−L + [σ2, σ, σ ′, σ1]xx−L

+ [σ, σ1, σ2, σ
′]xx−L + [σ, σ1, σ

′, σ2]xx−L + [σ, σ ′, σ1, σ2]xx−L. (8.14)

This gives explicitly

I+ +
(
[+ −]xx−L − [− +]xx−L

) = [− + + +]xx−L + [+ + + −]xx−L − [+ − + +]xx−L − [+ + − +]xx−L

= 1
6P 3M − P [+ − +]xx−L, (8.15a)

I− −
(
[+ −]xx−L − [− +]xx−L

)
= −[+ − −−]xx−L − [− − − +]xx−L + [− − + −]xx−L + [− + −−]xx−L

= − 1
6M3P + M[− + −]xx−L, (8.15b)

I+ −
(
[+ −]xx−L − [− +]xx−L

) = [− + − +]xx−L + [+ − + −]xx−L − 2[+ − − +]xx−L

= 2Q − M[+ − +]xx−L, (8.15c)

I− +
(
[+ −]xx−L − [− +]xx−L

) = −[− + − +]xx−L − [+ − + −]xx−L + 2[− + + −]xx−L

= −2Q + P [− + −]xx−L, (8.15d)

where we have used (2.20) and defined

Q ≡ [− + − +]xx−L + [+ − + −]xx−L. (8.16)

This Q is independent of x, as can be seen by differentiating the right-hand side with respect
to x and using (2.24). The expression in large parentheses in (8.12) can be calculated as

K−σ,−σ ′
1

cosh2 W−V0
2

= σ ′ e−(σ+σ ′)V0

sinh(W − V0)

(
e−[(σ/2)+σ ′](W−V0)

cosh3 W−V0
2

− 1

)
. (8.17)
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Substituting (8.15) and (8.17) into (8.12), we obtain

r̄2 = 1

4L0 cosh3 W−V0
2

{
e−(W+V0)/2 [+ − +]xx−L − e(W+V0)/2[− + −]xx−L

+
1

L0

(
L4

0

4
+ Q

)
sinh

W − V0

2

}
. (8.18)

The coefficient r̄n for n � 3 can be obtained in the same way. The expression for general
n is

r̄n = 1

2n+1Ln
0

∑
{σi ,σ

′
i }

(
K−σn−1,−σ ′

n−1
· · ·K−σ2,−σ ′

2
K−σ1,−σ ′

1

1

cosh2 W−V0
2

)

× Iσn−1,σ
′
n−1

· · · Iσ2,σ
′
2
Iσ1,σ

′
1

(
[+−]xx−L − [−+]xx−L

)
, (8.19)

where the sum is over σi = ±1 and σ ′
i = ±1 for 1 � i � n − 1.

9. The expansion of S

It was shown in [2] that the expansion of Sr takes the form

Sr(x, k) − 1
2 = a0(x) + ika1(x) + (ik)2a2(x) + (ik)3a3(x) + · · · , (9.1)

where

a0 = 1
4 lim

W→−∞
e−W+V (x)(r̄0 − 1), (9.2a)

an = 1
4 lim

W→−∞
e−W+V (x) r̄n (n � 1) (9.2b)

(see equations (4.4) of [2]). Substituting (8.2), (8.7) and (8.18) into (9.2) gives

a0(x) = − 1
2 eV (x)−V0 , (9.3a)

a1(x) = 1

4L0
eV (x)−V0

(
[+−]xx−L − [−+]xx−L

)
, (9.3b)

a2(x) = 1

2L0
eV (x)−V0

{
e−V0 [+ − +]xx−L − 1

2L0

(
L4

0

4
+ Q

)}
. (9.3c)

When the potential is periodic, the functions Sr and Sl are simply related by

Sr(x, k) = Sl(x,−k). (9.4)

(See appendix D. This is a special feature of the periodic case.) Therefore,

S(x, k) − 1 = s0(x) + (ik)2s2(x) + (ik)4s4(x) + · · · , (9.5)

where

sn(x) = 2an(x) (n even), sn(x) = 0 (n odd). (9.6)

The first two nonvanishing coefficients are

s0(x) = −eV (x)−V0 , (9.7a)

s2(x) = eV (x)−V0

L0

{
e−V0 [+ − +]xx−L − 1

2L0

(
L4

0

4
+ Q

)}
. (9.7b)
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10. The expansion of the Green function

The small-k expansion of the Green function is obtained by substituting (9.5) into (2.13). The
expansion has the form

GS(x, y; k) = (ik)−1g−1 + g0 + ikg1 + (ik)2g2 + · · · , (10.1)

and the coefficients can be expressed in terms of s0, s1, s1, . . . as

g−1(x, y) = 1

2
√

s0(x)s0(y)
, (10.2a)

g0(x, y) = q1(x, y)g−1(x, y), (10.2b)

g1(x, y) = 1

2

{
[q1(x, y)]2 − s2(x)

s0(x)
− s2(y)

s0(y)

}
g−1(x, y), (10.2c)

g2(x, y) =
{

1

6
[q1(x, y)]3 + q3(x, y) − 1

2
q1(x, y)

[
s2(x)

s0(x)
+

s2(y)

s0(y)

]}
g−1(x, y), (10.2d)

where we have defined

qn(x, y) ≡ −
∫ x

y

sn−1(z) dz. (10.3)

Substituting (9.7) into (10.2), and also using q1(x, y) = e−V0 [+]xy , we obtain

g−1(x, y) = e−[V (x)+V (y)]/2

2
eV0 , (10.4a)

g0(x, y) = e−[V (x)+V (y)]/2

2
[+]xy, (10.4b)

g1(x, y) = e−[V (x)+V (y)]/2

4L0

{
[+ − +]xx−L + [+ − +]yy−L + L0 e−V0

(
[+]xy

)2 − eV0

L0

(
L4

0

4
+ Q

)}
,

(10.4c)

g2(x, y) = e−V0 [+]xyg1(x, y) −
{

e−3V0

3

(
[+]xy

)3
+

∫ x

y

s2(z)dz

}
g−1(x, y). (10.4d)

The series (10.1) is convergent for sufficiently small |k| (see the comment at the end of
section 7 and appendix B).

11. Example

As an example, let us consider the periodic square potential [22]

V (x) =
{

0 (0 < x < a)

C (a < x < L),
V (x + L) = V (x). (11.1)

For 0 < x < a, we have the exact expressions of α and β as [17]

α(x, x − L; k) = 1

1 − A2
e−ikL(1 − A2 e2ikb), (11.2a)

β(x, x − L; k) = A

1 − A2
e2ikx e−ikL(e2ikb − 1), (11.2b)
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where

A ≡ − tanh(C/2), b ≡ L − a. (11.3)

From (11.2) we obtain Rr, Rl and S by using (D.7) and (D.9) of appendix D. The expressions
for a < x < L have similar forms. The exact expression of the Green function is obtained by
substituting (D.9) into (2.13), or, more simply, by using equations (3.6) of [20]. The resulting
expression of GS for 0 < y � x < a is

GS(x, y; k) = [2A e2ikx e−ik(L−b) sin kb − K(k)][2A e−2iky eik(L−b) sin kb − K(k)]

2ik eik(x−y){4A2 sin2 kb − [K(k)]2} , (11.4)

where

K(k) ≡ sin kL − A2 sin[k(L − 2b)] − (1 − A2){1 − [Y (k)]2}1/2, (11.5)

Y (k) = 1

1 − A2
{cos kL − A2 cos[k(L − 2b)]} (11.6)

(see (5.8) for the definition of Y).
It is the characteristic of periodic systems that the energy spectrum has a band structure.

Let us suppose that k is a real number. The energy lies in a band if [Y (k)]2 < 1, and in a gap if
[Y (k)]2 > 1 (see appendix D). The band structure can be seen in the graph of GS(k) (figure 1).
The low-energy expansion can be used for calculating the Green function in the lowest
band.

In this example, M = a + b e−C and P = a + b eC , as can be easily seen. Hence,

L0 =
√

(a + b e−C)(a + b eC), eV0 =
√

a + b eC

a + b e−C
. (11.7)

We assume that 0 < x < a. The integrals appearing in the expansion of R̄r or S can be
calculated, for example, as

[+−]xx−L = [+−]x0 + [+−]0
−b + [+−]−b

x−L + [+]−b
x−L[−]0

−b + [+]−b
x−L[−]x0 + [+]0

−b[−]x0
= 1

2 [x2 + b2 + (a − x)2] + e−C(a − x)b + (a − x)x + eCbx

= 1
2 (a2 + b2) + e−Cb(a − x) + eCbx. (11.8)

Changing the sign of C gives

[−+]xx−L = 1
2 (a2 + b2) + eCb(a − x) + e−Cbx. (11.9)

In a similar way,

[+−+]xx−L = a

6
(a2 + 3b2) + 2bx(x − a) sinh C +

b

6
(3a2 + b2) eC, (11.10a)

[−+−]xx−L = a

6
(a2 + 3b2) − 2bx(x − a) sinh C +

b

6
(3a2 + b2) e−C, (11.10b)

[+−+−]xx−L = 1

24
(a4 + 6a2b2 + b4) +

1

3
[b(3a2 + b2)x − 6abx2 + 4bx3] sinh C

+
ab

6
(a2 + b2) e−C, (11.11a)

[−+−+]xx−L = 1

24
(a4 + 6a2b2 + b4) − 1

3
[b(3a2 + b2)x − 6abx2 + 4bx3] sinh C

+
ab

6
(a2 + b2) eC. (11.11b)
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Figure 1. Graphs of (a) Y (k), (b) Re GS(x, y; k) and (c) Im GS(x, y; k) for potential (11.1),
plotted as functions of real k, with C = 1, L = 1, a = 0.6, x = 0.4 and y = 0.1. In (a), the
shaded and unshaded areas represent the bands (|Y | < 1) and the gaps (|Y | > 1), respectively. In
(b) and (c), the solid lines show the exact value of GS (equation (11.4)). The imaginary part of GS
is identically zero in the gaps. The graphs on the right are close-up plots, where the dashed lines
show the result of the low-energy expansion up to order k2. The dashed curves almost overlap with
the solid curves in the lowest band except for the imaginary part near the band edge.

Substituting (11.11) into (8.16), we have

Q = 1

12
(a4 + 6a2b2 + b4) +

ab

3
(a2 + b2) cosh C. (11.12)

For 0 < y � x < a, it is obvious that [+]xy = x −y. The low-energy expansion of GS(x, y; k)

for 0 < y � x < a is obtained by substituting the above expressions into (10.4) (and (9.7)).
The result of the expansion up to order k2 is plotted in figures 1(b) and (c) (the graphs on the
right). It can be seen that this expansion gives a very good approximation in the lowest band
except near the band edge.
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12. Conclusion

The low-energy expansion formula for the reflection coefficient introduced in [1] and [2] for
non-periodic potentials (equations (3.11), (3.12) and (3.13) of the present paper) is applicable
to periodic potentials as well, if only we replace (3.3) by (4.3). In the periodic case, the general
expression for the nth-order coefficient of the expansion is obtained as (8.19). The expansion
of the Green function takes the form of (10.1), with the first four coefficients given by (10.4).
The method of this paper can be extended to more general potentials which are asymptotically
periodic at spatial infinity, and this will be discussed elsewhere.

Appendix A. Derivation of (2.10)

As noted in section 2, the functions α(x, x ′; ±k) + β(x, x ′; ±k) are solutions of the
Schrödinger equation (1.3). If f is identically zero (i.e. V = constant), then obviously
α(x, x ′; ±k) = e∓ik(x−x ′) and β(x, x ′; ±k) = 0. Hence,

α(x, x ′; ±k) + β(x, x ′; ±k) = e∓ik(x−x ′) if f = 0. (A.1)

Note that definition (2.3) is not restricted to x � x ′. Since U(x ′, x; k) is the inverse of the
matrix U(x, x ′; k), we have

α(x ′, x;±k) = α(x, x ′,∓k), β(x ′, x;±k) = −β(x, x ′; ±k). (A.2)

Let us replace f (x) by fx1,x2(x). If we define

χ1(x) ≡ α(x, x1; k) + β(x, x1; k), (A.3)

then χ1(x) is a solution of the Schrödinger equation (2.9). Since fx1,x2(x) = 0 for x < x1, it
is obvious from (A.1) that

χ1(x) = e−ik(x−x1) for x < x1. (A.4)

From (2.5) we have

α(x, x1; k) = α(x, x2; k)α(x2, x1; k) + β(x, x2;−k)β(x2, x1; k),

β(x, x1; k) = β(x, x2; k)α(x2, x1; k) + α(x, x2;−k)β(x2, x1; k).
(A.5)

Using this, we can write

χ1(x) = α(x2, x1; k)[α(x, x2; k) + β(x, x2; k)]

+ β(x2, x1; k)[α(x, x2;−k) + β(x, x2;−k)]. (A.6)

Since fx1,x2(x) = 0 for x > x2, from (A.1) and (A.6) we find

χ1(x) = α(x2, x1; k) e−ik(x−x2) + β(x2, x1; k) eik(x−x2) for x > x2. (A.7)

If we divide the right-hand sides of (A.4) and (A.7) by α(x2, x1; k), they coincide with the
right-hand sides of (2.10a). Hence, we can see that ψ1(x) ≡ χ1(x)/α(x2, x1; k) is the solution
of the Schrödinger equation (2.9) satisfying (2.10a).

In a similar way, we define

χ2(x) ≡ α(x, x2;−k) + β(x, x2;−k). (A.8)

By using

α(x, x2;−k) = α(x, x1;−k)α(x2, x1; k) − β(x, x2;−k)β(x2, x1;−k),

β(x, x2;−k) = β(x, x1;−k)α(x2, x1; k) − α(x, x2;−k)β(x2, x1;−k),
(A.9)
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we can rewrite χ2 as

χ2(x) = α(x2, x1; k)[α(x, x1;−k) + β(x, x1;−k)]

−β(x2, x1;−k)[α(x, x1; k) + β(x, x1; k)]. (A.10)

It is obvious that ψ2(x) ≡ χ2(x)/α(x2, x1; k) is the solution of the Schrödinger equation
satisfying (2.10b).

Appendix B. Analyticity of α(k), β(k) and the reflection coefficients

We define the functions α̃± and β̃± by(
α̃+(x, x ′; k) β̃−(x, x ′; k)

β̃+(x, x ′; k) α̃−(x, x ′; k)

)

≡ 1

2

(
1 1

−1 1

)(
α(k) β(−k)

β(k) α(−k)

)(
1 −1
1 1

)

= 1

2

(
α(k) + α(−k) + β(k) + β(−k) −α(k) + α(−k) − β(k) + β(−k)

−α(k) + α(−k) + β(k) − β(−k) α(k) + α(−k) − β(k) − β(−k)

)
,

(B.1)

where α(k) and β(k) stand for α(x, x ′; k) and β(x, x ′; k) respectively. From (2.1), it follows
that

∂

∂x

(
α̃+(x, x ′; k) β̃−(x, x ′; k)

β̃+(x, x ′; k) α̃−(x, x ′; k)

)
=

(
f (x) ik

ik −f (x)

)(
α̃+(x, x ′; k) β̃−(x, x ′; k)

β̃+(x, x ′; k) α̃−(x, x ′; k)

)
.

(B.2)

Using (1.2), we can rewrite (B.2) as

∂

∂x
[eV (x)/2α̃+(x, x ′; k)] = ik eV (x)[e−V (x)/2β̃+(x, x ′; k)],

∂

∂x
[e−V (x)/2β̃+(x, x ′; k)] = ik e−V (x)[eV (x)/2α̃+(x, x ′; k)].

(B.3)

The initial conditions for these equations are α̃+(x ′, x ′; k) = 1, β̃+(x ′, x ′; k) = 0.
Equations (B.3) with these initial conditions are equivalent to the integral equations

eV (x)/2α̃+(x, x ′; k) = eV (x ′)/2 + ik
∫ x

x ′
eV (z)[e−V (z)/2β̃+(z, x ′; k)] dz,

e−V (x)/2β̃+(x, x ′; k) = ik
∫ x

x ′
e−V (z)[eV (z)/2α̃+(z, x ′; k)] dz.

(B.4)

These equations can be solved by iteration. The solution is formally expressed as

α̃+(x, x ′; k) = e−[V (x)−V (x ′)]/2
∞∑

m=0

(ik)2mI +
2m(x, x ′),

β̃+(x, x ′; k) = e[V (x)+V (x ′)]/2
∞∑

m=0

(ik)2m+1I +
2m+1(x, x ′),

(B.5)

where I +
2m and I +

2m+1 are defined recursively by

I +
2m(x, x ′) =

∫ x

x ′
eV (z)I +

2m−1(z, x
′) dz, I +

2m+1(x, x ′) =
∫ x

x ′
e−V (z)I +

2m(z, x ′) dz, (B.6)
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with I +
0 = 1. It is easy to see that I +

1 (x, x ′) = [−]xx ′ , I
+
2 (x, x ′) = [−+]xx ′ , I

+
2 (x, x ′) = [−+−]xx ′ ,

and so on. Namely,

I +
2m(x, x ′) = [− + − + · · · − +]xx ′ , I +

2m+1(x, x ′) = [− + − + · · · + −]xx ′ . (B.7)

In the first equation of (B.7), there are 2m alternating plus and minus signs in the expression
on the right-hand side. In the second equation, there are 2m + 1 alternating signs.

We assume that both x and x ′ are finite. As we are assuming that V (x) is finite for any
finite x, there exists a constant number C such that

e−V (z) < C, eV (z) < C for x ′ � z � x. (B.8)

From definition (2.19), we can easily see that

I +
2m(x, x ′) <

C2m

(2m)!
, I +

2m+1(x, x ′) <
C2m+1

(2m + 1)!
. (B.9)

Therefore,
∞∑

m=0

∣∣(ik)2mI +
2m(x, x ′)

∣∣ <

∞∑
m=0

|k|2m C2m

(2m)!
= cosh(C|k|),

∞∑
m=0

∣∣(ik)2m+1I +
2m+1(x, x ′)

∣∣ <

∞∑
m=0

|k|2m+1 C2m+1

(2m + 1)!
= sinh(C|k|).

(B.10)

Thus, the infinite series on the right-hand sides of (B.5) are absolutely convergent for any k.
This means that α̃+(x, x ′; k) and β̃+(x, x; k) are entire functions of k.

In the same way, we have

α̃−(x, x ′; k) = e[V (x)−V (x ′)]/2
∞∑

m=0

(ik)2mI−
2m(x, x ′),

β̃−(x, x ′; k) = e−[V (x)+V (x ′)]/2
∞∑

m=0

(ik)2m+1I−
2m+1(x, x ′),

(B.11)

where

I−
2m(x, x ′) = [+ − + − · · · + −]xx ′ , I−

2m+1(x, x ′) = [+ − + − · · · − +]xx ′ . (B.12)

Equations (B.11) and (B.12) are obtained from (B.5) and (B.7) respectively by changing the
sign of the potential V. Just like α̃+ and β̃+, the functions α̃− and β̃− are entire functions of k.
Inverting (B.1), we can express α(±k) and β(±k) in terms of α̃± and β̃± as(

α(x, x ′; k) β(x, x ′; −k)

β(x, x ′; k) α(x, x ′; −k)

)
= 1

2

(
α̃+ + α̃− − β̃+ − β̃− α̃+ − α̃− − β̃+ + β̃−

α̃+ − α̃− + β̃+ − β̃− α̃+ + α̃− + β̃+ + β̃−

)
.

(B.13)

Obviously α(x, x ′; k) and β(x, x ′; k) are entire functions of k as long as both x and x ′ are
finite. We obtain (5.11) by substituting (B.5) and (B.11) into (B.13).

It is shown in appendix D that the reflection coefficient Rr(x,−∞; k) (Im k > 0)
for periodic potentials can be expressed in terms of α(k) ≡ α(x, x − L; k) and β(k) ≡
β(x, x − L; k) as

Rr(x,−∞; k) = −β(k)

[1/λ(k)] − α(k)
(B.14)

with λ(k) = Y (k) − i
√

1 − [Y (k)]2 and Y (k) = [α(k) + α(−k)]/2. Since α(k) and β(k) are
entire functions, Rr(x,−∞; k) may possibly have singularities only where 1/λ(k) = α(k) or
Y (k) = ±1.
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It can be shown that |τ(x2, x1; k)| < 1 for Im k > 0 and x1 < x2 (see section XIII
of [17]). This implies that |α(k)| > 1 for Im k > 0. Since |λ(k)| > 1 for Im k > 0, the
equality 1/λ(k) = α(k) can never hold in Im k > 0. If Y (k) = ±1, then |λ(k)| = 1. This
cannot hold for Im k > 0, either. (If |λ(k)| = 1, there exist two independent solutions of the
Schrödinger equation which remain finite as x → ±∞. This can happen for Im k = 0, but
not for Im k > 0.) Thus, neither 1/λ(k) = α(k) nor Y (k) = ±1 can hold in Im k > 0, and
so Rr(x,−∞; k) is analytic in the upper half-plane (Im k > 0). Note that Rr(x,−∞; k) has
branch point singularities on the real axis. These branch points correspond to the edges of the
bands.

The power series expansion of Rr(x,−∞; k) in terms of k is convergent for sufficiently
small |k| if the right-hand side of (B.14) is analytic in some neighborhood of the origin. Since

[1/λ(k)] − α(k) = 2ikL0 cosh2 V (x) − V0

2
+ O(k3),

1 − [Y (k)]2 = k2L2
0 + O(k4),

(B.15)

there exists a number C such that [1/λ(k)] − α(k) �= 0 and 1 − |Y (k)|2 �= 0 for 0 < |k| < C.
Although [1/λ(k)] − α(k) = 0 at k = 0, this zero is canceled by the zero of β(k) in
the numerator (see equation (5.16)), and so the right-hand side of (B.14) does not have a
pole at k = 0. The origin is not a branch point, either, since

√
1 − |Y (k)|2 
 kL0 for

k 
 0. Therefore, Rr(x,−∞; k) is analytic, and the power series expansion in terms of k is
convergent, in |k| < C.

Since R̄r (x,−∞;W ; 0) = − tanh W−V0
2 �= ∞ (see (8.2)), we know that R̄r does not have

a pole at the origin. As Rr(x,−∞; k) is analytic in a neighborhood of k = 0, it is obvious
from definition (2.15b) that R̄r (x,−∞;W ; k), too, is analytic in some neighborhood of the
origin. Thus, the expansion of R̄r (x,−∞;W ; k) in terms of k is convergent for sufficiently
small |k|.

Appendix C. Relation with the Weyl–Titchmarsh m-function

A natural way to define the transmission and reflection coefficients (for finite intervals) for the
Schrödinger equation is to consider the truncated potential

V S
x1,x2

(x) ≡
⎧⎨
⎩

0 (x < x1)

VS(x) (x1 � x � x2)

0 (x2 < x).

(C.1)

This V S
x1,x2

is different from f 2
x1,x2

+ f ′
x1,x2

(which appears in (2.9)), since the latter contains
delta functions at x = x1 and x = x2 (unless f (x1) = 0 or f (x2) = 0). The Schrödinger
equation

−d2ψ

dx2
+ V S

x1,x2
ψ = k2ψ (C.2)

has two independent solutions of the forms

ψ1(x) =
{
τ S(x2, x1; k) e−ik(x−x1) (x < x1)

e−ik(x−x2) + RS
r (x2, x1; k) eik(x−x2) (x > x2),

(C.3)

ψ2(x) =
{

eik(x−x1) + RS
l (x2, x1; k) e−ik(x−x1) (x < x1)

τ S(x2, x1; k) eik(x−x2) (x > x2).
(C.4)

This defines the transmission and reflection coefficients τ S, RS
r and RS

l for the Schrödinger
equation. Here we assume that Im k > 0. When VS belongs to the so-called limit point case
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[7], we can let x1 → −∞ or x2 → +∞ to obtain the reflection coefficients for semi-infinite
intervals. As shown in [2], the reflection coefficients RS

r (x,−∞; k) and RS
l (∞, x; k) are

related to Rr(x,−∞; k) and Rl(∞, x; k) by

Rr(x,−∞; k)

1 + Rr(x,−∞; k)
= RS

r (x,−∞; k)

1 + RS
r (x,−∞; k)

− f (x)

2ik
,

Rl(∞, x; k)

1 + Rl(∞, x; k)
= RS

l (∞, x; k)

1 + RS
l (∞, x; k)

+
f (x)

2ik
.

(C.5)

Let η1 and η2 be two independent solutions of the Schrödinger equation (1.3) satisfying
the conditions

η1(x0) = 1, η′
1(x0) = 0, η2(x0) = 0, η′

2(x0) = 1, (C.6)

with some fixed x0. And let χ± denote the solutions of (1.3) satisfying χ+(∞) = 0 and
χ−(−∞) = 0 (and which are are square integrable near +∞ and −∞, respectively). These
functions can be expressed as linear combinations of η1 and η2. We write

χ±(x) = η1(x) ± m± η2(x). (C.7)

This is the definition of the Weyl–Titchmarsh functions m+(x0, k) and m−(x0, k), which are
regarded as functions of x0 and k.

Let us suppose that VS(x) = 0 for x > x0. Then

η1(x) = cos[k(x − x0)], η2(x) = 1

k
sin[k(x − x0)] for x > x0, (C.8)

and so

χ−(x) = cos[k(x − x0)] − m−(x0, k)

k
sin[k(x − x0)]

= 1

2k
[k + im−(x0, k)] eik(x−x0) +

1

2k
[k − im−(x0, k))] e−ik(x−x0) for x > x0.

(C.9)

Comparing this with (C.3), we find [23, 24]

RS
r (x0,−∞; k) = k + im−(x0, k)

k − im−(x0, k)
, m−(x0, k) = ik − 2ik

RS
r (x0,−∞; k)

1 + RS
r (x0,−∞; k)

. (C.10)

In the same way,

RS
l (∞, x0; k) = k + im+(x0, k)

k − im+(x0, k)
, m+(x0, k) = ik − 2ik

RS
l (∞, x0; k)

1 + RS
l (∞, x0; k)

. (C.11)

From (C.5), (C.10) and (C.11), we obtain

Sr(x, k) = i

2k
[m−(x, k) + f (k)] +

1

2
, Sl(x, k) = i

2k
[m+(x, k) − f (k)] +

1

2
(C.12)

and

S(x, k) = i

2k
[m+(x, k) + m−(x, k)] + 1. (C.13)
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Appendix D. Exact expressions of Rr, Rl and S

The function α(x2, x1; k) satisfies the differential equations

∂

∂x2
α(x2, x1; k) = −ikα(x2, x1; k) + f (x2)β(x2, x1; k),

∂

∂x1
α(x2, x1; k) = ikα(x2, x1; k) − f (x1)β(x2, x1;−k).

(D.1)

(The first equation of (D.1) is a component of (2.1). The second equation is obtained by using
(A.2) of appendix A.) Hence, if f is periodic,

∂

∂x
α(x, x − L; k) = f (x)[β(x, x − L; k) − β(x, x − L;−k)], (D.2)

and so
∂

∂x
[α(x, x − L; k) + α(x, x − L;−k)] = 0. (D.3)

Thus, Y (k) defined by (5.8) is independent of x. We define

Z(k) ≡ {1 − [Y (k)]2}1/2 (D.4)

to write (5.7) as

λ(k) = Y (k) − iZ(k), 1/λ(k) = Y (k) + iZ(k). (D.5)

The branch of the square root in (D.4) is chosen such that |λ(k)| > 1 for Im k > 0. With this
choice of the square root, Z(k) is an odd function of k whereas Y (k) is an even function (see
(5.13)). So, from (D.5), we find 1/λ(k) = λ(−k).

Hereafter, we write α(k) and β(k) in place of α(x, x−L; k) and β(x, x−L; k) respectively.
Substituting the elements of (5.9) into (2.7b) gives

Rr(x, x − nL; k) = −β(k)(1 − γ n)

[1/λ(k)] − α(k) − γ n[λ(k) − α(k)]
,

Rl(x + nL, x; k) = Rl(x, x − nL; k) = β(−k)(1 − γ n)

[1/λ(k)] − α(k) − γ n[λ(k) − α(k)]
,

(D.6)

where γ ≡ [λ(k)]−2. Since |γ | < 1 for Im k > 0, we can take the limit n → ∞ of these
expressions and obtain

Rr(x,−∞; k) = −β(k)

[1/λ(k)] − α(k)
= 2β(k)

α(k) − α(−k) − 2iZ(k)
,

Rl(∞, x; k) = β(−k)

[1/λ(k)] − α(k)
= −2β(−k)

α(k) − α(−k) − 2iZ(k)
.

(D.7)

Substituting into (2.11), and also using (2.4), we have

Sr(x, k) = 2β(k)

α(k) − α(−k) + 2β(k) − 2iZ(k)
= 1

2

α(k) − α(−k) + 2β(k) + 2iZ(k)

α(k) − α(−k) + β(k) − β(−k)
,

Sl(x, k) = −2β(−k)

α(k) − α(−k) − 2β(−k) − 2iZ(k)
= 1

2

α(k) − α(−k) − 2β(−k) + 2iZ(k)

α(k) − α(−k) + β(k) − β(−k)
.

(D.8)

Since Z(−k) = −Z(k), it is obvious that Sl(x, k) = Sr(x,−k). The expression of S is
obtained from (D.8) as

S(x, k) = 1 +
2iZ(k)

α(k) − α(−k) + β(k) − β(−k)
. (D.9)
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By definition, the above expressions hold for Im k = 0 as well.
When k is a real number, [α(k)]∗ = α(−k), [β(k)]∗ = β(−k) and Y (k) = Re α(k). If

[Y (k)]2 > 1, the two eigenvalues of U(x, x − L; k) are real and |λ(k)| > 1. If [Y (k)]2 < 1,
then |λ(k)| = 1. This means that the energy lies in a band if [Y (k)]2 < 1, and in a gap if
[Y (k)]2 > 1 (see, for example, [7]).

Appendix E. Details of the calculation leading to (5.20) and (5.21)

To simplify the expressions, we write

δ ≡ V (z) − V (x)

2
, ω ≡ V (z) + V (x)

2
, θ ≡ V (x) − V0

2
, ϕ ≡ W − V (x)

2
(E.1)

and

b ≡ 1
2

(
[−+]xx−L − [+−]xx−L

)
. (E.2)

Then (5.17) and (5.18) read

α(x, x − nL;±k) = (cosh2 θ) λ±n − (sinh2 θ)λ∓n + O(k2),

β(x, x − nL;±k) =
(

∓ sinh θ cosh θ − ik
b

2L0

)
(λn − λ−n) + O(k2),

(E.3)

α(x − nL, z;±k) = cosh δ ∓ ik

2

(
eω[−]x−nL

z + e−ω[+]x−nL
z

)
+ O(k2),

β(x − nL, z;±k) = sinh δ ± ik

2

(
eω[−]x−nL

z − e−ω[+]x−nL
z

)
+ O(k2).

(E.4)

Substituting (E.3) and (E.4) into (5.19) yields

α(x, z;±k) = cosh θ cosh(θ + δ) λ±n − sinh θ sinh(θ + δ) λ∓n

∓ ik

2
cosh θ

(
eω−θ [−]x−nL

z + eθ−ω[+]x−nL
z

)
λ±n

∓ ik

2
sinh θ

(
eω−θ [−]x−nL

z − eθ−ω[+]x−nL
z

)
λ∓n

− ik
b

2L0
sinh δ(λn − λ−n) + O(k2),

β(x, z;±k) = − sinh θ cosh(θ + δ) λ±n + cosh θ sinh(θ + δ) λ∓n

± ik

2
sinh θ

(
eω−θ [−]x−nL

z + eθ−ω[+]x−nL
z

)
λ±n

± ik

2
cosh θ

(
eω−θ [−]x−nL

z − eθ−ω[+]x−nL
z

)
λ∓n

− ik
b

2L0
cosh δ(λn − λ−n) + O(k2). (E.5)

Equations (E.5) can be written in the form(
α(x, z; k) β(x, z;−k)

β(x, z; k) α(x, z;−k)

)

=
(

cosh θ − sinh θ

− sinh θ cosh θ

)(
A(k) B(−k)

B(k) A(−k)

)
− C(k)

(
sinh δ cosh δ

cosh δ sinh δ

)
,

(E.6)
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where

A(±k) ≡ cosh(θ + δ)λ±n ∓ ik

2

(
eω−θ [−]x−nL

z + eθ−ω[+]x−nL
z

)
λ±n,

B(±k) ≡ sinh(θ + δ)λ∓n ± ik

2

(
eω−θ [−]x−nL

z − eθ−ω[+]x−nL
z

)
λ∓n,

C(k) ≡ ik
b

2L0
(λn − λ−n).

(E.7)

Therefore,(
ᾱ(x, z;W ; k) β̄(x, z;W ;−k)

β̄(x, z;W ; k) ᾱ(x, z;W ;−k)

)

=
(

cosh ϕ − sinh ϕ

− sinh ϕ cosh ϕ

) (
cosh θ − sinh θ

− sinh θ cosh θ

) (
A(k) B(−k)

B(k) A(−k)

)

−C(k)

(
cosh ϕ − sinh ϕ

− sinh ϕ cosh ϕ

) (
sinh δ cosh δ

cosh δ sinh δ

)

=
(

cosh(θ + ϕ) − sinh(θ + ϕ)

− sinh(θ + ϕ) cosh(θ + ϕ)

)(
A(k) B(−k)

B(k) A(−k)

)

−C(k)

(
sinh(δ − ϕ) cosh(δ − ϕ)

cosh(δ − ϕ) sinh(δ − ϕ)

)
. (E.8)

Comparing (E.6) with (E.8), we can see that ᾱ and β̄ are obtained from α and β, respectively,
by the replacements

θ → θ + ϕ, δ → δ − ϕ, ω → ω + ϕ. (E.9)

Namely,

ᾱ(x, z;W ;±k) = cosh(θ + ϕ) cosh(θ + δ) λ±n − sinh(θ + ϕ) sinh(θ + δ) λ∓n

∓ ik

2
cosh(θ + ϕ)

(
eω−θ [−]x−nL

z + eθ−ω[+]x−nL
z

)
λ±n

∓ ik

2
sinh(θ + ϕ)

(
eω−θ [−]x−nL

z − eθ−ω[+]x−nL
z

)
λ∓n

− ik
b

2L0
sinh(δ − ϕ)(λn − λ−n) + O(k2),

β̄(x, z;W ;±k) = − sinh(θ + ϕ) cosh(θ + δ) λ±n + cosh(θ + ϕ) sinh(θ + δ)λ∓n

± ik

2
sinh(θ + ϕ)

(
eω−θ [−]x−nL

z + eθ−ω[+]x−nL
z

)
λ±n

± ik

2
cosh(θ + ϕ)

(
eω−θ [−]x−nL

z − eθ−ω[+]x−nL
z

)
λ∓n

− ik
b

2L0
cosh(δ − ϕ)(λn − λ−n) + O(k2). (E.10)

Note that the replacements (E.9) are equivalent to V (x) → W . This is an expected result
if we consider the meaning of the variable W (see [21]). Equations (5.20) are obtained by
substituting (E.1) and (E.2) into (E.10).

From (E.10), we obtain

ᾱ(x, z;W ; k) + β̄(x, z;W ;−k) = eθ+δ(cosh(θ + ϕ)λn − sinh(θ + ϕ) λ−n)

− ik eω−θ (cosh(θ + ϕ)λn + sinh(θ + ϕ)λ−n)[−]x−nL
z

− ik
b

2L0
eδ−ϕ(λn − λ−n) + O(k2),
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ᾱ(x, z;W ; k) − β̄(x, z;W ;−k) = e−(θ+δ)(cosh(θ + ϕ)λn + sinh(θ + ϕ)λ−n)

− ik eθ−ω(cosh(θ + ϕ)λn − sinh(θ + ϕ)λ−n)[+]x−nL
z

+ ik
b

2L0
eϕ−δ(λn − λ−n) + O(k2). (E.11)

Substituting (E.1), and using definitions (5.22), we can write (E.11) as

ᾱ(x, z;W ; k) + β̄(x, z;W ;−k) = e[V (z)−V0]/2 cosh
W − V0

2
(1 + c0γ

n) λn

×
(

1 − ik
1 − c0γ

n

1 + c0γ n
eV0 [−]x−nL

z + kb1

)
+ O(k2),

ᾱ(x, z;W ; k) − β̄(x, z;W ;−k) = e−[V (z)−V0]/2 cosh
W − V0

2
(1 − c0γ

n)λn

×
(

1 − ik
1 + c0γ

n

1 − c0γ n
e−V0 [+]x−nL

z + kb2

)
+ O(k2), (E.12)

where the quantities b1 and b2 (which come from the terms involving b) are independent of z.
Equations (5.21) are easily obtained from (E.12).

Appendix F. Verification of AA−1g = g and A−1Ah = h

Let us verify AA−1g = g and A−1Ah = h using expression (4.3), or equivalently (5.33). We
can see that
∂

∂x

∫ x

x−L

(
e−W [+]xz − eW [−]xz

)
g(z,W) dz

= − (
e−W [+]xx−L − eW [−]xx−L

)
g(x − L,W)

+
(
eV (x)−W − e−V (x)+W

) ∫ x

x−L

g(z,W) dz

= 2L0 sinh(W − V0)g(x,W), (F.1)

where we have used (2.24), (5.1) and (5.2). Since the last line of (F.1) vanishes for W = V0,

we can insert the operator D in front of the integral in the first line without changing the result.
Namely,

AD
∫ x

x−L

(
e−W [+]xz − eW [−]xz

)
g(z,W)dz = 2L0 sinh(W − V0)g(x,W). (F.2)

Dividing both sides by 2L0 sinh(W − V0), we obtain AA−1g = g.
In a similar way we have, by integrating by parts,∫ x

x−L

(
e−W [+]xz − eW [−]xz

) ∂

∂z
h(z,W) dz

= 2L0 sinh(W − V0)h(x,W) − 2
∫ x

x−L

sinh[W − V (z)]h(z,W) dz. (F.3)

We apply the operator D to both sides of (F.3). The first term on the right-hand side does not
change. For the second term, we can use (2.28) to write

D
∫ x

x−L

sinh[W − V (z)]h(z,W) dz =
∫ W

V0

dW

∫ x

x−L

dz
∂

∂W
sinh[W − V (z)]h(z,W)

=
∫ W

V0

dW

∫ x

x−L

dzBh(z,W). (F.4)
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This vanishes on account of (6.3). Therefore,

D
∫ x

x−L

(e−W [+]xz − eW [−]xz )Ah(z,W) dz = 2L0 sinh(W − V0)h(x,W). (F.5)

Dividing by 2L0 sinh(W − V0) gives A−1Ah = h.

Appendix G. Verification of (7.1)

We can write the left-hand side of (7.1) as∫ x

x−L

BA−1g(z,W) dz = 1

2L0

∂

∂W

{
1

sinh(W − V0)

∫ x

x−L

dz sinh[W − V (z)]

×D
∫ z

z−L

dz′(e−W [+]zz′ − eW [−]zz′
)
g(z′,W)

}
. (G.1)

Substituting

sinh[W − V (z)] = 1

2

∂

∂z

(
e−W [+]xz − eW [−]xz

)
, (G.2)

and integrating by parts, we obtain∫ x

x−L

dz sinh[W − V (z)]
∫ z

z−L

dz′(e−W [+]zz′ − eW [−]zz′
)
g(z′,W)

= −1

2
(e−WP − eWM)

∫ x

x−L

dz′(e−W [+]xz′ − eW [−]xz′
)
g(z′,W)

+
1

2

∫ x

x−L

dz
(
e−W [+]xz − eW [−]xz

)
(e−WP − eWM)g(z,W)

−
∫ x

x−L

dz
(
e−W [+]xz − eW [−]xz

)
sinh[V (x) − W ]

∫ z

z−L

dz′g(z′,W)

= 0, (G.3)

where we have used (5.2). In a similar way, using e−WP − eWM = 2L0 sinh(V0 − W) and
e−V0P − eV0M = 0, we have∫ x

x−L

dz sinh[W − V (z)]
∫ z

z−L

dz′(e−V0 [+]zz′ − eV0 [−]zz′
)
g(z′, V0)

= L0 sinh(W − V0)

∫ x

x−L

dz′(e−V0 [+]xz′ − eV0 [−]xz′
)
g(z′, V0). (G.4)

Equations (G.3) and (G.4) give

1

sinh(W − V0)

∫ x

x−L

dz sinh[W − V (z)] D
∫ z

z−L

dz′(e−W [+]zz′ − eW [−]zz′
)
g(z′,W)

= L0

∫ x

x−L

dz′(e−V0 [+]xz′ − eV0 [−]xz′
)
g(z′, V0). (G.5)

Since this expression is independent of W , we can see that the right-hand side of (G.1) is zero.
Thus, (7.1) is obtained.
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